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Fig. 1: Our system enables multi-fingered robotic hands to perform a diverse set of manipulation tasks, ranging from precise
manipulation of small objects (e.g., pens, nuts, batteries) to power grasps of larger items (e.g., frying pans). This versatility
and dexterity are achieved through a co-design framework for both control and fingertip-geometry optimization.

Abstract— Human grasps can be roughly categorized into two
types: power grasps and precision grasps. Precision grasping
enables tool use and is believed to have influenced human
evolution. Today’s multi-fingered robotic hands are effective
in power grasps, but for tasks requiring precision, parallel
grippers are still more widely adopted. This contrast high-
lights a key limitation in current robotic hand design: the
difficulty of achieving both stable power grasps and precise,
fine-grained manipulation within a single, versatile system. In
this work, we bridge this gap by jointly optimizing the control
and hardware design of a multi-fingered dexterous hand,
enabling both power and precision manipulation. Rather than
redesigning the entire hand, we introduce a lightweight fingertip
geometry modification, represent it as a contact plane, and
jointly optimize its parameters along with the corresponding
control. Our control strategy dynamically switches between
power and precision manipulation and simplifies precision
control into parallel thumb–index motions, which proves robust
for sim-to-real transfer. On the design side, we leverage large-
scale simulation to optimize the fingertip geometry using a
differentiable neural-physics surrogate model. We validate our
approach through extensive experiments in both sim-to-real
and real-to-real settings. Our method achieves an 82.5% zero-
shot success rate on unseen objects in sim-to-real precision
grasping, and a 93.3% success rate in challenging real-world
tasks involving bread pinching. These results demonstrate that
our co-design framework can significantly enhance the fine-
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grained manipulation ability of multi-fingered hands without
reducing their ability for power grasps.

I. INTRODUCTION

A classical taxonomy divides human grasps into two main
categories: the power grasp, which secures objects against
the palm with the fingers, and the precision grasp, which
places the thumb in opposition to other fingertips [1], [2].
While both are fundamental, the precision grasp is particu-
larly associated with the fine-grained manipulation required
for tool use in early humans, which significantly shaped the
evolutionary trajectory of our species [3]–[5].

Recent advancements have shown that multi-fingered
robotic hands are effective in power grasp, as more con-
tact points provide greater stability [6]–[9]. In contrast, for
fine-grained manipulation tasks requiring precision, two-
finger parallel grippers are more widely adopted, with im-
pressive applications ranging from folding shirts to gear
insertion [10]–[14]. Therefore, replicating the human-level
dexterity in multi-fingered hands, especially for precision-
oriented manipulation, remains a fundamental challenge.

Our goal is to enable a multi-fingered dexterous hand
with reliable precision manipulation while preserving strong
power grasp capability. We aim for the following goals:
(i) plug-and-play compatibility with existing commercially
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available multi-fingered hands by augmenting fingertip ge-
ometry rather than designing a new hand from scratch, (ii)
achieving both power and precision manipulation in a unified
hardware platform and control strategy, and (iii) validation
with both sim-to-real transfer using large-scale simulation
and real-to-real policies using teleoperation.

To achieve these goals, we adopt a joint control–design
optimization framework. On the control side, we switch
between power and precise manipulation, where precise
manipulation is simplified into coordinated thumb–index
actions and parallel finger motions. We also propose a
neural switcher that dynamically switch to corresponding
grasp mode based on the object. On the design side, we
leverage large-scale simulation with a neural physics surro-
gate model to co-optimize fingertip geometry and control
variables, yielding physically effective fingertip designs. To-
gether, these components provide a simple and generalizable
solution for both precise and power manipulation.

We validate the proposed system in both sim-to-real and
real-to-real settings. In the sim-to-real setting, we focus on
grasping tasks, where objects are categorized into power
grasps and precise grasps. Demonstrations are optimized
with multiple objectives, and a policy is learned from them.
Real-world experiment results show that our method out-
performs the SOTA method on precise grasps by a large
margin. In the real-to-real setting, we tackle more difficult
compositional task and precision task. Demonstrations are
collected using our switchable teleoperation, where precise
manipulation use optimized control. The trained policies are
capable of picking up an M4 hex nut with precision and
power grasping a pan handle, as shown in Fig. 1.

In summary, we claim the following contributions:

• Control optimization for precise manipulation, including
thumb-index motion generation for both grasp synthesis
and real-world teleoperation.

• Design optimization with a contact-plane geometry rep-
resentation and a neural-physics surrogate distilled from
large-scale simulations.

• Extensive experiments that demonstrate the effectiveness
of our co-design framework in both simulation and the
real world, showing that our system improves precise
manipulation ability without compromising power grasp.

II. RELATED WORK

Power to Precise Manipulation. Power manipulation
refers to using whole-hand contacts to apply large, robust
forces that move or stabilize objects without requiring high
pose accuracy (e.g., holding a hammer, grasping a large
bottle). Recent studies [6]–[9], [15]–[19] have shown that
multi-fingered robotic hands perform well in power manip-
ulation, mainly because additional contact points increase
stability. For example, [6], [7] leverage large-scale simulation
to learn dexterous grasping policies and employ point cloud
observations for robust sim-to-real transfer. [18], [19] use
VR devices to collect high-quality teleoperation data and
demonstrate impressive dexterous hand tasks.

In contrast, precise manipulation refers to using fingertip-
scale, finely controlled motions and contacts to achieve
accurate object poses and delicate interactions (e.g., inserting
a key, turning a screw). For these precise tasks, parallel
grippers are more widely adopted [10]–[14]. How to achieve
precise manipulation, especially with multi-fingered hands,
is still an open problem for the community. To this end,
previous works [20]–[24] either design better hardware or
use more accurate sensors such as tactile sensors. [20], [21]
optimize hardware design to achieve precise manipulation,
while the more general approaches [22]–[24] employ tactile
sensing to facilitate precise manipulation. Instead of design-
ing new hardware or using tactile sensing, our approach
optimizes both control and finger tip geometry for precise
manipulation.

Computational Design and Co-Design. Previous compu-
tational methods for mechanical design often use gradient-
based optimization and task-aware planning over geometry
or topology to create structures for target tasks [25], [26].
However, these pipelines can be computationally expen-
sive and may not generalize well to new objects or tasks.
Differentiable simulators address this by enabling the joint
optimization of morphology and control within a single
framework [27]. Recent work has increasingly utilized co-
design as a tool for manipulation, such as in the creation
of dexterous hands [28], fingertips [29], and grippers [30],
[31]. Rather than designing a completely new dexterous
hand, we enhance an existing hand by optimizing its ge-
ometry. In our co-design framework, this is achieved by
attaching a newly optimized fingertip cover that improves
precise manipulation. During optimization, we model the
fingertip geometry as a contact plane and leverage large-scale
simulation by using a neural dynamics surrogate. Imitation
Learning. Imitation learning is a common framework for
learning robot control policies from demonstrations, and it
has been applied in many recent works [18], [19], [32]–
[42]. Demonstrations may be obtained through teleopera-
tion [19], [43]–[45], simulation [6], [46]–[48], real-world
policy trial-and-error [49], [50], human videos [37], [39],
[51], or a mixture of these sources [38], [52], [53]. In this
work, we validate our approach on real-to-real tasks using
teleoperation data and on sim-to-real tasks using simulation
data. We apply existing imitation learning methods [6], [10]
to our collected demonstrations. Our co-design framework
improves the robustness of both demonstrations and the
robotic hand, leading to more effective precise manipulation
policies in simulation and the real world.

III. METHOD

A. Overview

This work focuses on learning manipulation skills for
multi-fingered hands using imitation learning. In this frame-
work, a control policy π learns from expert demonstrations
D = (O,A), consisting of observations O and actions A
collected through teleoperation, simulation, or other methods.
To achieve precise manipulation, we introduce an approach
that jointly optimizes both control (Sec. III-B) and design



(Sec. III-C) of dexterous hands. We cross validate our
approach on tasks under both sim-to-real and real-to-real
settings, where data is collected through optimization in
simulation and teleoperation in the real world.

Control Optimization. Our control method follows two
principles. The first is categorization, where we switch
between power and precision grasps based on the target
object. For example, in our Cooking Setup task, a power
grasp is used for a pot handle, while a precision pinch
grasp is used for a thin asparagus. The second principle is
simplification. We achieve this by reducing the degrees of
freedom of the hand and the number of contact points. We
also constrain finger motion to be parallel movements during
precision grasps. Although it is possible to use more complex
motions for precise manipulation, our experiments show that
simpler motions are effective for both retargeting and sim-
to-real transfer.

Design Optimization. An effective control strategy can
still be limited by the hand’s physical design. To address this,
we apply a co-design framework to optimize the fingertip
geometry for precise manipulation. We model the contact
region between the thumb and index finger as a plane and
search for the optimal plane. This optimization process uses
a learned, differentiable forward dynamics model along with
several objectives, which allows us to leverage large-scale
simulation to find a better fingertip design.

B. Control Optimization for Precise Manipulation

The robot’s action space A is defined as the target joint
positions q ∈ Rd, where d = 19 (7 for the arm and 12 for
the hand). The collected data, in both simulation and the real
world, consist of observations O and trajectories of actions
{qt}Tt=1, where each qt ∈ A.

Sim-to-real Grasping. We proof the effectiveness of the
proposed optimization pipeline in Sim-to-real settings. In
simulation, a common way to collect demonstrations for
dexterous grasping is to first optimize for force closure
and then apply motion planning combined with simulation
filtering [6], [7], [48]. Although this framework can produce
grasps that work even for tiny objects in simulation, the poses
are often complex because all fingers are encouraged to apply
force to the object. Deploying these grasps to the real world
is impractical due to the sim-to-real gap.

We categorize grasping poses based on the type of target
object. For simplicity, we focus on two categories: power
grasp for large objects, and precision grasp for small or
thin objects. For power grasp optimization, we use the
original force closure objective from [54]. For precision
grasp, we introduce a variant objective. Given object mesh
O and joint configuration q, we sample n contacts on
the thumb and n on the index fingertip. Each contact has
position xi ∈ R3 and normal ci ∈ R3. The grasp map

is G =

[
I3 · · · I3

[x1]× · · · [x2n]×

]
, where [x]× is the skew-

symmetric matrix of x. We minimize Eprecise = ∥Gc∥2,
with c = [c⊤1 , . . . , c

⊤
2n]

⊤, which encourages the net wrench

Fig. 2: Control Optimization. For precise grasps control,
we optimize for opposite force closure and parallel finger
motions, which significantly improve sim-to-real transfer.

to approach zero for the thumb-index grasp. We also fix other
fingers during optimization to reduce the degrees of freedom.

After optimizing the grasp pose, a common way for
power grasp to obtain pre-grasp and overshoot-grasp poses
is based on the object’s signed distance function (SDF),
which pushes fingers toward the object surface [6], [48]. We
propose to use simple parallel motions for precision grasps.
Let d be the normalized direction vector from the thumb
contact points to the index contact points. To generate a
pre-grasp pose, the thumb and index move apart by a small
distance α. The required joint velocity are calculated using
the Jacobian pseudoinverse J† as ∆qthumb = −αJ†

thumbd,
∆qindex = αJ†

indexd. Experimental results show that this
simple thumb-index grasp with parallel motion is robust for
sim-to-real deployment. The finger motion and its real-world
counterpart are visualized in Fig. 2.

All demonstrations are filtered using the ManiSkill simu-
lator [55]. After data collection, we train two DexSimple [6]
policies, one on power grasp data and one on precision grasp
data. We then add a switcher consisting of PointNet [56]
and an MLP to predict whether an object should be grasped
with a power grasp or a precision grasp, and apply the
corresponding policy actions. The policy is deployed to real
world in a zero-shot fashion.

Real-to-real Tasks. We tackle both compositional tasks
that combine power and precision grasps, and pure precision
tasks in a real-to-real setting. Teleoperation is used to collect
demonstrations. The standard position-based retargeting [57]
struggles with fine-grained actions such as pinching a nut.
To address this, we switch between normal retargeting and a
pinch controller. The hand pose is optimized by minimizing
Eprecise = ∥Gc∥2, where c represents contact normals
between the thumb and index finger (rather than between
hand and object). We apply the same parallel finger motions
used in the sim-to-real setting, where the thumb and index
move along direction d with joint updates ∆q = J†d.
Finally, an ACT policy [10] is trained on these teleoperated
demonstrations for deployment.

C. Design Optimization for Precise Manipulation

We aim to optimize hand geometry to enhance precision
manipulation without compromising power manipulation. To
this end, we represent geometry using a simple contact plane
P , parameterized by a reference point p and a unit normal



Fig. 3: Design Optimization. We optimize fingertip geome-
try (represented as a contact plane) under multiple objectives.
The resulting fingertip cover improves precision manipula-
tion in real-world.

vector n: P = {x ∈ R3 | n⊤(x − p) = 0}. This simplifies
simulation and improves robustness in sim-to-real transfer.
Given P , we project a slightly inflated convex hull of the
fingertip onto it and 3D print the resulting union geometry.
The fingertip cover is easy to assemble and generalizes well
to different multi-fingered hands.

During plane parameter optimization, we jointly optimize
P and the joint position q under multiple objectives using
gradient descent. (Note that q here is not used for grasp
optimization; it assumes that no object is present.) The
objectives and the real-world fingertip covers are shown in
Fig. 3.

Geometric Objectives. The first two objectives encourage
thumb-index contact while preventing penetration:

Eatt =

N∑
i=1

d(xi, P ), Erep =
∑

v∈S(F )

[ϕP (v) < 0] d(v, P ).

(1)
Here, xi are candidate contact points on the thumb and index,
S(F ) is the surface point cloud of finger meshes F , d(·, P )
is the point-to-plane distance, ϕP is the signed distance to
P , and [·] denotes the indicator function. The attraction term
pulls sampled contacts toward P , while the repulsion term
penalizes surface points that cross P .

Manipulability Objective. To further ensure stable mo-
tion, we include an objective that encourages the thumb and
index to move in parallel along the plane normal direction.
We measure this using directional manipulability [58]:

Emani = − (∥Jthumb n∥2 + ∥Jindex n∥2) , (2)

where Jthumb and Jindex are the Jacobians of the thumb and
index, respectively.

Neural Physics Objective. While the previous terms focus
on kinematics and geometry, we further introduce a neural
physics objective to leverage large-scale simulation. We first
optimize 1k plane parameters from different initializations
using the above objectives, and then evaluate them in sim-
ulation on the grasping task introduced in Sec. III-B. The
simulation outcomes are distilled into a neural surrogate
model f , implemented as a PointNet encoder followed by
an MLP:

f : (P, q, o) 7→ ŝ, (3)

where (P, q) denotes the plane parameters and joint configu-
ration, o is the object observation (point cloud), and ŝ ∈ [0, 1]
is the predicted task success probability. We incorporate this
surrogate into the optimization as an energy term:

Ephys = −f(P, q, o), (4)

which encourages geometries and poses that maximize the
predicted success probability. This neural term provides
gradient feedback during optimization: we sample a batch
of objects and jointly optimize a shared P with diverse q.
In this way, P is refined toward geometries that are not
only kinematically consistent but also physically effective
for manipulation.

IV. EXPERIMENT

A. Experimental Settings

Our method is validated on two platforms: XArm robotic
arm + XHand dexterous hand (7+12 DOFs, referred to as
xArm below), as well as Unitree G1 Humanoid + Inspire
dexterous hand (7+6 DOFs, referred to as G1 below). We
cross-validate it on tasks under both sim-to-real and real-to-
real settings.

Sim-to-real Tasks. We focus on the grasping task in
the sim-to-real setting, following the Dex1B [6] benchmark.
Our dataset includes 7k Objaverse [59] objects and 1k
primitive shapes (spheres, boxes, cylinders) of various sizes.
The data are categorized by grasp type. Objaverse objects
with successful poses optimized by Eprecise (Sec. III-B) are
assigned to precision grasps, while the rest are used for
power grasps. All primitive shapes are used for precision
grasps. In total, 6k objects are used for power grasps and
3k for precision grasps. We hold out 30% of the objects for
testing. We collect 30k trajectories for power and precision
grasps, respectively.

The success criterion in Dex1B for grasping is to lift an
object from the table to a certain height while maintaining
contact between the fingers and the object. During data
collection, Dex1B additionally applies lateral external forces
to the objects to ensure that the optimized grasp pose is
robust, but these external forces are removed during final
evaluation. To ensure better sim-to-real transfer, we keep
external forces during all evaluations.

We adopt the DexSimple policy [6] for the grasping policy.
The neural switcher (Sec. III-B) consists of a PointNet [56]
and an MLP, with hidden dimensions (256, 128). The neural
physics model (Sec. III-C) also consists of a PointNet and
an MLP with the same hidden dimensions.

Real-to-real Tasks. Compared to sim-to-real experiments,
we focus on more difficult compositional task and precision
task in the real-to-real setting. The task description are as
below:

• Cooking Setup. A compositional task in which the
robot must sequentially pinch-grasp an asparagus spear
from the cutting board, place it into the frying pan, then
regrasp the pan handle and lift it off the stove.



Optimization Power G. SR (%) Precise G. SR (%)

Method Design Control Seen Unseen Seen Unseen

Simulation (xArm)
Dex1B [6] 59.60 55.88 56.38 53.91
Ours ✓ 60.64 54.12 61.54 59.04
Ours ✓ ✓ 61.52 53.35 64.74 64.17

Simulation (G1)
Dex1B [6] 60.06 56.46 44.75 44.44
Ours ✓ 60.54 55.42 45.62 45.26
Ours ✓ ✓ 59.93 57.67 49.91 49.32

Zero-shot Sim-to-Real (xArm)
Dex1B [6] – 60.00 – 12.50
Ours ✓ – 70.00 – 20.00
Ours ✓ ✓ – 80.00 – 82.50

TABLE I: Main Results for Sim-to-real Grasping Task.
The top two parts report simulation success rates for G1 and
xArm, and the bottom part shows zero-shot sim-to-real re-
sults. Our method with joint control and design optimization
consistently outperforms Dex1B on precise grasps, especially
in real world precision grasps. Power G. and Precise G.
denote Power Grasp and Precision Grasp, respectively.

• Multi-pen Grasp. The robot is required to grasp two
marker pens and place them into a box within a sin-
gle attempt. Specifically, it first pinch-grasps one pen
and dexterously rolls it into the palm, secured by the
remaining three fingers. It then pinch-grasp the second
pen, before dropping both pens into the box.

• Nut onto Peg. In this task, the robot must precisely
pinch-grasp an M4 hex nut (inner diameter Φ =
4.1mm) from the tabletop and accurately insert it onto
an upright M3 bolt (outer diameter Φ = 2.9mm).
The small clearance between the nut and bolt requires
fine dexterity and precise alignment, making this task
particularly challenging for precise manipulation.

• Bread Pinch. In this task, the robot is required to
pinch-grasp a single slice of toast from the table. Since
excessive downward pressing may deform the bread or
even trigger the emergency stop, the robot must execute
the grasp with precise control.

• Battery Insert. This task involves a sequence of precise
manipulations in which the robot must grasp a battery
from the table, align it with the charging socket, place
it in position, and apply a controlled push to ensure it
is fully secured. This task is conducted on G1 setup.

We employ the teleoperation framework from [19] to col-
lect demonstration data, where the teleoperator’s wrist pose
is mapped to the XArm end-effector, and the teleoperator’s
finger motions are retargeted to the corresponding XHand
finger positions. For the baseline retargeting method [57],
we adopt the dexpilot retargeting scheme. For the scripted
baseline, we record joint configurations from manually exe-
cuted passive grasping motions. In our optimized retargeting
approach, the Euclidean distance between the teleoperator’s
thumb and index fingertips is mapped to the opening angle of
the corresponding XHand fingers. We collected 15 successful

Fig. 4: Real-world test objects used for evaluating zero-shot
sim-to-real grasping.

demonstrations for each task.
After data collection, we use [10] for the autonomous

policy to verify the policy learning ability in our design. The
action trunking transformer (ACT) is implemented by [55],
where the input is third-person camera view with XArm-
XHand joint position as proprioception information. The
output action is joint targets of Robot Arm and Hand. It is
worth noting that we do not employ processed or quantified
gripper values for hand supervision, but instead rely solely
on raw joint command signals. This aims to validate that our
control optimization would not affect the performance of the
policy. We tested 15 times for each task on the real robot.

B. Sim-to-real Results

Main Results. The main results of the sim-to-real grasping
task are reported in Tab. I. We mainly compare against
Dex1B [6], a state-of-the-art sim-to-real grasping policy.

The simulation results are presented in the top part of
Tab. I, showing policy success rates for power and precision
grasps on both training and testing splits. Both Dex1B and
our policy are trained with 30K demonstrations per grasp
type. The key differences are that our precision grasp demon-
strations are collected using the method described in Sec. III-
B (Control optimization in the table), and our fingertip
geometry is optimized using the method described in Sec. III-
C (Design optimization in the table). Since all policies are
trained on successful demonstrations, the Dex1B policy still
achieves strong performance (53.91%) on tiny objects in
the precision grasp category. Our policy outperforms Dex1B
on precision grasps by about 10% (64.17% vs 53.91%),
primarily because parallel finger motions and flat contact
planes provide greater robustness when the policy predicts
imperfect grasping poses. At the same time, our policy
achieves comparable results on power grasps, indicating that
the added design optimization does not compromise the
dexterous hand’s capability for power grasps.

The zero-shot sim-to-real results are reported in the bottom
part of Tab. I. The real-world testing objects are shown in
Fig. 4, and all objects are unseen during training. The policy
rollouts are visualized in Fig. 5(a) and (b). We evaluate
5 trials per object, resulting in 40 trials in total for each
category. Unlike the simulation results, our method with opti-
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Fig. 5: Task policy rollouts across eight tasks. (a)-(b) and (g) illustrate sim-to-real transfer of the precision grasp policy on
the xArm and G1 setup. (c)-(f) and (h) show real-to-real executions on five distinct tasks: Cooking Setup, Multi-pen Grasp,
Nut onto Peg, Bread Pinch, and Battery Insert on xArm and G1.

mized design outperforms Dex1B by a large margin (82.50%
vs. 12.50%) in real-world deployment. The main reason is
that all-finger grasping in Dex1B is often too complex for
small objects, making it impractical to deploy under sim-
to-real gaps in sensing, calibration, and dynamics. We also
observe that our policy with control-only optimization does
not achieve strong performance (20%), which indicates that
design optimization is crucial for robust sim-to-real transfer,
as the flat plane provides significantly more contact area.

Ablation Study. We conduct ablation studies in simulation
to validate the effectiveness of our proposed techniques.
Specifically, we ablate the control optimization, the design
optimization, and the Ephys objective (see Sec. III). In-
stead of training an imitation learning policy on successful
demonstrations and evaluating performance as in Tab. I, we
directly report the optimization success rates for precise
grasp data collection, which serve as a more direct metric
of effectiveness.

Our control-only optimization (C. only in the table)
achieves a lower success rate (0.41% vs. 2.75%), since
reducing the DOFs makes the optimization problem more
challenging. Nevertheless, this control optimization is still
valuable because the resulting parallel motions are more

Optimization Objective Opt. SR (%)

Method Design Control Physics

Dex1B [6] 2.75
C. only ✓ 0.41
C.+D. (w/o Ephys) ✓ ✓ 3.77
C.+D. ✓ ✓ ✓ 5.35

TABLE II: Ablation Study for Precise Grasp Optimiza-
tion in Simulation. We report the optimization success
rate (Opt. SR; %) for control-only (C.), joint control and
design (C.+D.), and the physics objective Ephys. Joint C.+D.
achieves the highest SR (5.35%). Incorporating the Ephys
objective improves performance from 3.77% to 5.35%.

robust for learning and sim-to-real transfer. Our joint control
and design optimization (C.+D. in the table) achieves the
highest success rate (5.35%), highlighting the effectiveness
of design optimization. We also evaluate design optimization
without the Ephys objective (C.+D. w/o Ephys in the table).
The performance gap (3.77% vs. 5.35%) indicates that the
Ephys objective distilled from large-scale simulation helps
find more physically plausible fingertip geometries.



Setting Compositional Task Precision Task

Method Design Control Cooking Setup Multi-pen Grasp Nut onto Peg Bread Pinch Battery Insert

Autonomous Policy
Baseline Original Retargeting [57] 20.0% 53.3% – 60.0% 13.3%
Ours Optimized Optimized 73.3% 66.7% 66.7% 93.3% 66.7%

Teleoperation
Baseline Original Retargeting [57] 41.7% 57.7% 6.6% 57.1% 26.7%
Ours Optimized Optimized 88.2% 50.0% 68.2% 93.8% 80.0%

TABLE III: Results under autonomous policy and teleoperation on compositional and precision tasks.

Setting Success Rate (%)

Design Control Policy Teleoperation

Original Retargeting [57] 60.0% 57.1%
Original Manual Script 73.3% 57.1%
Manual Design Manual Script 60.0% 50.0%
Optimized (Ours) Optimized (Ours) 93.3% 93.8%

TABLE IV: Ablation study on the bread pinch task. We
evaluate different combinations of fingertip designs and
control methods.

C. Real-to-real Results

Main Results. The Table III highlights the effectiveness
of the proposed co-optimized control and design framework
across both autonomous policy and teleoperation settings, for
both compositional and precision manipulation task.

In both teleoperation and autonomous settings, the base-
line system shows limited success due to the original finger-
tip design, which makes it difficult to reliably pinch small
or thin objects such as asparagus in the Cooking Setup,
pens in the Multi-pen Grasp, and thin-cut toast in the Bread
Pinch task. With our optimized control–design, success rates
increase significantly: for example, from 20.0% to 73.3%
in Cooking Setup and from 0.0% to 66.7% in Nut onto
Peg task for the autonomous policies. This demonstrates
marked improvements in both compositional and fine-grained
precision manipulation skills. Meanwhile, we show that both
teleoperation, which maps the operator fingertip distance to
the optimized path, and autonomous execution, which learns
from joint positions, confirm the effectiveness of our system.

Table IV reports the ablation study results on the Bread
Pinch task. Our optimized fingertip design combined with
control consistently outperforms all variants, surpassing both
the naive implementation and the manually crafted geome-
try–control design.

Qualitative Results To further illustrate the effectiveness
of our proposed method, Fig. 5 presents task rollouts across
eight representative scenarios. Subfigures (a), (b) and (g)
demonstrate successful sim-to-real transfer of the precision
grasp policy, where the robot reliably manipulates small
objects like a screwdriver, banana and glue stick using the
co-optimized fingertip design and control strategy.

Subfigures (c)-(f) and (h) highlight real-to-real executions
of complex and fine-grained tasks: Cooking Setup, Multi-pen

Grasp, Nut onto Peg, Bread Pinch, and Battery Insert. These
tasks involve diverse object geometries, contact constraints,
dynamic demands and precision demands. In each case, the
robot achieves stable and repeatable performance, showcas-
ing the system’s ability to generalize across manipulation
contexts. The visual results confirm that the co-optimization
approach leads to robust dexterity even in challenging real-
world scenarios.

V. CONCLUSION

We introduced a unified framework that enables multi-
fingered robotic hands to perform both power and precision
grasps through a combination of control-policy learning and
fingertip geometry optimization. By simplifying precision
control into parallel thumb-index motions and co-designing
fingertip covers using a neural-physics surrogate, our method
achieves robust, generalizable manipulation without requir-
ing complex hardware modifications.

Extensive evaluations in both sim-to-real and real-world
tasks show significant improvements over existing ap-
proaches, particularly in fine-grained precision grasping.
These results highlight the effectiveness of combining
lightweight mechanical design with data-driven control, of-
fering a practical path toward more dexterous and adaptable
robotic systems.
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