GIFS: Neural Implicit Function for General Shape Representation CVPR 2022

Jianglong Ye¹, Yuntao Chen², Naiyan Wang², Xiaolong Wang¹

¹UC San Diego, ²TuSimple

GIFS allows the reconstruction of **general** object shapes including watertight, non-watertight, and multi-layer shapes.

Our Idea

- Previous works^{1,2} divide the space into inside and outside
- They can not represent multi-layer and non-watertight shapes

1. Park, Jeong Joon, et al. "Deepsdf: Learning continuous signed distance functions for shape representation." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019.

2. Mescheder, Lars, et al. "Occupancy networks: Learning 3d reconstruction in function space." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019.

Our Idea

- Instead of modeling the relationship between point and surface
- we model the relationship between different points to represent general shapes

Proposed Representation

We use a **binary flag** to indicate whether two points are separated by any surface

Proposed Representation

- Point1 and Point3 are not separated by any surface, thereby have the negative flag
- Point1 and Point2 have the positive flag

Proposed Representation

Here, we show how a multi-layer shape is represented, the positive flags are red bolded

Let's look at some reconstruction results

We evaluate our representation on the task shape reconstruction from sparse **point cloud**.

Outside view

Our method can represent microwave with a bowl inside

Cut view

Outside view

truck with some inner structures

many other non-watertight shapes......

and non-watertight garments.

Compared to previous works

Our method achieves the **SOTA** performance on watertight shapes

1. Liao, Yiyi, Simon Donne, and Andreas Geiger. "Deep marching cubes: Learning explicit surface representations." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018.

Mescheder, Lars, et al. "Occupancy networks: Learning 3d reconstruction in function space." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019.
Chibane, Julian, Thiemo Alldieck, and Gerard Pons-Moll. "Implicit functions in feature space for 3d shape reconstruction and completion." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020.

and better visual effect on general shapes

1. Chibane, Julian, Thiemo Alldieck, and Gerard Pons-Moll. "Implicit functions in feature space for 3d shape reconstruction and completion." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020.

2. Chibane, Julian, and Gerard Pons-Moll. "Neural unsigned distance fields for implicit function learning." Advances in Neural Information Processing Systems 33 (2020): 21638-21652.

Here is our architecture

First, the input point cloud is encoded to a grid of **features** .

Given two 3D points, corresponding **features** are extracted from the grid.

Two extra UDF branch can be used to enhance the point embedding

Thanks