
Dex1B: Learning with 1B Demonstrations for
Dexterous Manipulation

Jianglong Ye∗, Keyi Wang∗, Chengjing Yuan, Ruihan Yang, Yiquan Li, Jiyue Zhu
Yuzhe Qin, Xueyan Zou, Xiaolong Wang

UC San Diego
https://jianglongye.com/dex1b

Fig. 1: The Dex1B benchmark consists of 1B generated high-quality demonstrations for grasping (top) and articulation (middle)
tasks. At the bottom, we show the direct sim-to-real transfer results of our method DexSimple trained on Dex1B. This
demonstrates that Dex1B is scalable and generalizable to real environments.

Abstract—Generating large-scale demonstrations for dexterous
hand manipulation remains challenging, and several approaches
have been proposed in recent years to address this. Among
them, generative models have emerged as a promising paradigm,
enabling the efficient creation of diverse and physically plausible
demonstrations. In this paper, we introduce Dex1B, a large-
scale, diverse, and high-quality demonstration dataset produced
with generative models. The dataset contains one billion demon-
strations for two fundamental tasks: grasping and articulation.
To construct it, we propose a generative model that integrates
geometric constraints to improve feasibility and applies addi-

∗ Equal contribution.

tional conditions to enhance diversity. We validate the model on
both established and newly introduced simulation benchmarks,
where it significantly outperforms prior state-of-the-art methods.
Furthermore, we demonstrate its effectiveness and robustness
through real-world robot experiments.

I. INTRODUCTION

Dexterous manipulation with hand has been a long-standing
topic in robotics. While its highly flexible and dynamic
nature allows for more complex and robust manipulation
skills, the high degrees of freedom (DoF) of a hand makes
it very challenging to achieve its ideal function. In fact,

https://jianglongye.com/dex1b


with recent advancements in applications using parallel-jaw
grippers [55, 18, 11, 56, 3], researchers in the community
have started questioning the necessity of dexterous hands and
having doubts about whether hands are only making problems
harder.

We argue that dexterous hand is indeed valuable, but we
just did not have enough data to capture the diverse and
complex distributions required for effective dexterous manip-
ulation. To address this data scarcity, previous works have
explored various approaches, including human demonstra-
tions [26, 38, 10, 9], optimization-based methods [47, 8, 46],
reinforcement learning (RL)-based techniques [12, 57]. While
these methods help generate demonstrations at a certain scale,
they each have limitations: human annotation is costly and
imprecise, optimization-based methods are slow and sensitive
to initialization, and RL-based techniques lack data diversity.

Meanwhile, a large body of generative models [21, 27,
53, 24, 48] has been proposed in recent years to model the
distribution of demonstration datasets, motivating us to explore
how generative models can be leveraged for data generation.
And we identify two key issues when applying generative
models on data generation: i). Feasibility: The success rate
of generative models is often lower than that of deterministic
models. ii). Diversity: While generative models can produce
more diverse actions than deterministic models, they still tend
to interpolate between the seen demonstrations, which may
maintain or even reduce the original level of diversity of whole
dataset rather than expanding it.

To address the feasibility issue, we propose incorporating
geometric constraints into the generative model, which sig-
nificantly improves its performance. We also integrate opti-
mization techniques with generative models, leveraging the
strengths of both approaches: optimization ensures physically
plausible results, while generative models enable efficient
large-scale generation. To improve diversity, we introduce
additional conditions to the generative model and prioritize
sampling actions for less frequent condition values, encourag-
ing the model to generate actions that differ more from existing
ones in the dataset.

Our approach begins with an optimization-based method
to construct a small yet high-quality seed dataset of dexter-
ous manipulation demonstrations. We then train a generative
model on this dataset and use it to scale up data generation
efficiently. To mitigate biases introduced by optimization, we
propose an debias mechanism, which systematically improves
the diversity of generated data. This framework results in
Dex1B, a dataset comprising one billion dexterous hand
demonstrations, representing a substantial advancement in
scale, diversity and quality over existing datasets. Compared
to DexGraspNet [47], which operates on the object set of
similar scale, our dataset offers 700× more demonstrations,
significantly enriching the available training data for learning-
based models. Unlike previous approaches that rely solely
on human annotation or optimization, our method combines
optimization and neural networks, achieving a superior balance
between cost, efficiency, and data quality.

Dataset Task Num
Objects

Num Demo-
nstrations Method

DDG [23] Grasping 565 6.9K GraspIt
DexYCB [7] Grasping 20 1K Annot.
ContactPose [6] Grasping 25 2306 Capture
RealDex [26] Grasping 52 2.6K Capture
DexGraspNet [47] Grasping 5K 1.32M Optim.
SynH2R [12] Handover 1174 6K Optim. + RL
RP1M [57] Piano - 1M RL
Dex1B (Ours) Grasping + Arti. 6K 1B Optim. + Gen.

TABLE I: Dataset comparison on dexterous robotic manip-
ulation. Our proposed Dex1B is a multi-task trajectory-level
dataset with 1B demonstrations. Optim., Arti., Gen. are short
for optimization, articulation and generative models.

To effectively leverage the scale and diversity of Dex1B,
we introduce DexSimple, a new baseline that extends prior
work [21] by incorporating conditional generation and en-
hanced loss functions. Despite its simplicity, DexSimple ben-
efits from the scale and diversity of Dex1B, achieving state-
of-the-art (SoTA) performance across dexterous manipulation
tasks.

Our key contributions are as follows:
• We introduce a novel iterative data generation pipeline

that combines optimization and generative models to gen-
erate large-scale dexterous demonstrations for grasping
and articulation tasks. Using this approach, we construct
Dex1B, the largest and most diverse dexterous demon-
stration dataset to date.

• We propose a simple yet effective baseline method that
incorporates enhanced loss functions while supporting
conditional generation, making it particularly well-suited
for our iterative pipeline and policy deployment.

• Leveraging Dex1B and DexSimple, we achieve a 22%
performance improvement over previous best methods
on grasp synthesis tasks, setting a new benchmark in
dexterous manipulation.

II. RELATED WORK

Dexterous Hand Manipulation. Dexterous hand manipula-
tion is a pivotal area in robotics, concentrating on precise,
multi-fingered grasping and manipulation. Early research in
this field primarily addressed control-based methods, laying
the foundation for dexterous manipulation through studies in
caging to grasping techniques [39], grasp synthesis [40], and
manipulability in underactuated hands [36]. Further develop-
ments in control-based approaches simplified the search space
for multi-fingered grasps [34, 35], as well as optimization
processes [58, 15], leading to highly precise, agile, and safe
manipulation. However, these methods generally lack gener-
alization across diverse environments and use cases.

Subsequent research shifted towards learning-based ap-
proaches to enhance flexibility and scalability [1, 33]. This
includes generating pose vectors directly [22, 14, 52], utilizing
intermediate representations [41, 49], and leveraging contact
maps [5, 45]. While learning-based methods offer increased
adaptability, they are sensitive to data quality and scope, a



limitation addressed in this work. Recent works [29, 42] em-
ploy RL-based methods to transfer robust grasping capabilities
of dexterous robotic hands to the real world, using point cloud
and RGB inputs, respectively.
Manipulation Dataset. Existing manipulation datasets can be
broadly categorized into synthetic and real-world collections.
Synthetic datasets like ObMan [20] and DDGdata [30] utilize
the GraspIt planner to generate grasping poses but suffer
from limited diversity due to naive search strategies. Real-
world datasets with human hand poses offer more natural
interactions, such as HO3D [19] which leverages 2D keypoint
annotations and physics constraints, and DexYCB [7] which
captures multi-view RGBD recordings. ContactDB [4] and
ContactPose [6] further enhance grasp understanding by in-
corporating thermal imaging and detailed contact information,
respectively. However, these real-world datasets are inherently
restricted to human hand structures and common daily hand
poses. In contrast, our approach leverages optimization and
neural networks to generate diverse manipulation trajectories
that transcend these limitations. Our work is related to prior
work [28], which has a similar goal of expanding the distribu-
tion of generative models. Our approach differs in two ways:
(1) Scale: our pipeline aims to generate 1B demonstrations
rather than thousands. (2) Diversity: we increase diversity by
conditioning on object geometry instead of using a classi-
fier. The recent work DexGraspNet2.0 [54] proposes learning
a diffusion model over large-scale optimized demonstration
datasets. In contrast, our work integrates the generative model
directly into the data generation pipeline instead of relying
solely on optimization. Additionally, we unify grasping and
articulation tasks in both our model design and benchmark,
while they focus on grasping only. We presents the differences
of several representative manipulation datasets in Tab. I.

III. DEX1B BENCHMARK

We introduce a comprehensive benchmark for two fundamen-
tal dexterous manipulation tasks: grasping and articulation.
In the grasping task, the robot hand must reach for and lift
an object, whereas the articulation task requires the hand to
manipulate an articulated object to achieve a specific degree
of opening. Our benchmark consists of over 6,000 diverse
objects and provides one billion demonstrations across three
dexterous hands: the Shadow Hand, the Inspire Hand, and
the Ability Hand. Each demonstration consists of a complete
action sequence, from initial reaching to object manipulation.

To generate these demonstrations, we synthesize key hand
poses at critical interaction points with the object, while the
remaining action sequences—such as reaching, lifting, and
opening—are generated using motion planning. The evaluation
of our benchmark is conducted with ManiSkill [44, 50].
Overview of Data Generation. Broadly, hand pose gener-
ation for dexterous manipulation can be approached through
optimization-based methods or generative models. While opti-
mization methods can be effective, they are often computation-
ally expensive, especially for large-scale generation, and tend
to bias the dataset toward simpler cases. On the other hand,

generative models rely on an initial dataset to learn meaningful
data distributions. In this work, we integrate both approaches
to leverage their strengths.

As illustrated in Figure 2, we begin by constructing a small-
scale seed dataset using optimization. This seed dataset serves
as the foundation for training a generative model to learn
its underlying data distribution. The trained generative model
is then used to produce additional demonstrations. However,
since the generative model inherently inherits the biases of
the seed dataset, we introduce a debiasing strategy to enhance
diversity. Specifically, we condition the generative model on
targeted factors to generate hand poses under less frequently
observed conditions, thereby expanding the dataset beyond the
initial distribution. By iteratively refining the generative model
through repeated training and debiasing operations, we con-
struct our final dataset, Dex1B, which achieves both diversity
and robustness in dexterous manipulation demonstrations.
Optimization for Seed Dataset. To generate the seed dataset,
we implement an efficient optimization method for hand pose
synthesis based on previous work [47, 8], while including
new features like scene-level collision avoidance and support
for various hands. Although the optimization process is well-
engineered (1,000 grasps per minutes on a single GPU), gen-
erating one billion demonstrations remains computationally
expensive. Therefore, we only use optimization to create a
small-scale seed dataset (around 5 million poses). A dexterous
hand pose is parameterized by a tuple g = (T,R, θ), where
T ∈ R3 for global translation, R ∈ SO(3) for global
rotation, and θ ∈ Rd for robot hand joint angles (d = 22
for Shadow hand, d = 6 for Inspire and Ability hand). The
object geometry is represented by mesh O. Unlike previous
methods [47, 8], which use link meshes to model hand
geometry, we approximate the hand using manually defined
spheres (around 10 spheres for each link). This approximation
significantly accelerates the optimization process.

Our optimization energy function for the grasping task
Egrasp is given by:

Egrasp = Efc + wdisEdis + wsdfEsdf + wjEj + wsEs,

where Efc is the force closure energy term, Edis minimizes
contact distance, Esdf prevents penetration, Ej enforces joint
limits, and Es avoids self-collisions. wx represents the weight
for the corresponding terms. The penetration term Esdf is
formulated based on the sphere-based hand representation. A
sphere is defined by (c, r), where the center c ∈ R3 and the
radius r ∈ R+. The center c is transformed with the link pose
using forward kinematics. The SDF penetration term is given
by:

Esdf =
∑
i

ri − SDF (ci, O),

where SDF (·) is the signed distance function (SDF) query
between a 3D point and a mesh. To prevent scene collisions,
we incorporate SDF queries for other meshes (e.g., the table),
and the final SDF for a sphere is computed as the maximum
value across different meshes. Detailed formulation of other
energy terms can be found in previous works [47, 25].



Fig. 2: Dex1B demonstration collection. We first utilize an optimization algorithm to generate the Seed dataset. The Seed
dataset is then used as training data for DexSimple. DexSimple is subsequently used to sample a scaled proposal dataset. The
scaled dataset is validated using simulation. We intentionally debias the hand poses and objects to increase diversity.

While the force closure energy term Efc is suitable for the
grasping task, achieving force closure in the articulation task
is usually difficult and unnecessary. Instead, the articulation
task requires the hand pose to generate specific forces and
torques, such as rotating the top part of a laptop or pulling a
drawer. Therefore, we replace the force closure energy term
Efc with the task wrench space term Etws introduced in [8],
which approximates the difference between a target wrench
space and the current wrench space of a given hand pose. The
optimization energy function for the articulation task Earti is
defined as:

Earti = Etws + wdisEdis + wsdfEsdf + wjEj + wsEs.

The target wrench space for articulated objects with revolute
joints consists of a torque aligned with the joint axis and
arbitrary forces. The wrench space for objects with prismatic
joints consists of forces sampled from a 30◦ cone aligned with
the joint axis and zero torque.

The optimization process is implemented using Warp-
Lang [31] and accelerated with its BVH mesh structure. The
optimized hand poses are evaluated using the simulator, and
the successful ones are retained as a seed dataset.
Generative Models for Scaling-up Demonstrations. Gener-
ative models are widely adopted for capturing the distribution
of action demonstrations. However, applying these models for
data generation still presents several challenges: i). Feasibility:
The success rate of generative models is often lower than
that of deterministic models, leading to a higher proportion of
infeasible samples. ii). Limited Diversity: While generative
models can produce more diverse actions than deterministic
models, they still tend to interpolate between the demonstra-
tions, which may maintain or even reduce the original level
of diversity of whole dataset rather than expanding it.

To address the feasibility issue, we first incorporate geo-
metric constraints during the generation process, enabling our
model to outperform state-of-the-art generative models (see
Sec. IV for model details and Sec. V for experiments). In
addition, we apply a post-optimization step to the sampled
hand poses to prevent penetration and ensure that the fingers
closely cover the object. The energy function for the post-

optimization stage of both tasks, Epost, is defined as:

Epost = wdisEdis + wsdfEsdf + wjEj + wsEs.

We exclude the task-specific terms Efc and Etws here since
we only aim to make slight adjustments to the finger positions.
Although we use optimization in this stage, the overall data
generation, combined with generative models, remains signif-
icantly more efficient than pure optimization. The sampling
process is approximately 100 times faster, and the number of
iterations in post-optimization is substantially lower than in
the pure optimization (100 vs. 6000). The refined hand poses
are then evaluated using the simulator.

To improve diversity, we encourage the generative model
to sample actions that differ more from existing actions in
the dataset while maintaining success rate. To achieve this,
we introduce an additional condition to the generative model
and prioritize sampling actions for less frequent conditions.
Specifically, we associate each hand pose with a single 3D
point on the object. We first define the heading direction
v ∈ R3 of a hand pose as the vector from the palm center
to the midpoint between the thumb tip and the middle finger
tip. The closest point along this direction is then assigned
as the associated point of the hand pose. We adapt our
generative model to take the feature vector of a 3D point
as a condition for generating corresponding actions. During
data generation, we first statistically compute the probability
of each point associated with existing actions on the object
and then sample new actions inversely proportional to this
probability. Additionally, we statistically count the number of
existing actions for each object and sample more actions for
the more challenging ones.

After increasing the dataset size and diversity, retraining
the model on the expanded dataset can further improve its
performance. This iterative data generation process can be
repeated multiple times to progressively refine both the model
and the dataset.
Motion Planning. With the key-frame action, motion planning
is still required to complete both tasks. For the reaching
stage in both tasks, motion planning can be formulated as
an optimization problem that maximizes smoothness while
avoiding collisions. Given a manually defined starting action



Fig. 3: DexSimple Pipeline. We condition the CVAE model with hand parameters as well as local object point features. The
hand parameters are associated with the local object point. The model is supervised using both standard MSE and KL loss,
along with an approximate SDF loss to enforce geometric constraints.

and a goal action, we first linearly interpolate between them,
and then optimize the intermediate actions using the following
energy function:

Ereach = wsmooth

N∑
i=1

∥gi − gi−1∥2 + wsdf

N∑
i=0

Esdf(gi),

where {g0, g1, . . . , gN} denotes the sequence of hand poses
along the trajectory, wsmooth and wsdf are weights for smooth-
ness and collision avoidance respectively, and Esdf(gi) is
computed based on the sphere-based SDF errors with respect
to nearby scene meshes. Minimizing Ereach produces a trajec-
tory that is both smooth and collision-free. Compared to other
motion planning libraries, this simple optimization is naturally
suitable for large-scale parallel data generation.

After reaching, for the grasping task, we will execute an
over-shoot action to grasp the object and increase the height
of the target action to lift it. For the articulation task, we
will follow the trajectory based on the given joint axis (rotate
along the revolute joint axis or translate along the prismatic
joint axis). The complete planned trajectory is executed in the
simulator for evaluation.

IV. DEXSIMPLE MODEL

While a large body of generative models [21, 27, 53, 24, 48]
have been proposed for dexterous hand manipulation in recent
years, their use for data generation or policy deployment re-
mains limited. In this work, we revisit the simple CVAE model
and demonstrate that incorporating an SDF-based geometric
constraint during training enables it to outperform state-of-
the-art methods by a large margin. Furthermore, we integrate
additional condition over the base model to support diverse
data generation.
Vision Encoder and CVAE. We employ a point cloud P ∈
RN×3 as the visual input, using a full point cloud sampled
from the object mesh for data generation and a single-view
depth map for policy deployment. We utilize PointNet [37] to
encode the point cloud into a global feature vector fobj ∈ Rd

and local feature vectors fp ∈ Rd for each point p ∈ R3:

fobj, {fp}p∈P = PointNet(P ).

The VAE model uses a multi-layer perceptron (MLP) to
encode the hand pose g into the mean and standard deviation
vectors of a latent distribution. A sample is drawn from this
distribution and passed to the MLP decoder to reconstruct the
original hand pose. After concatenating conditional vectors
(e.g., the global point cloud feature vector fobj) to both the
inputs of the VAE encoder and decoder, the CVAE model can
generate samples under a given condition:

µ, σ = Enc(g, fobj),
z = µ+ σ ⊙ ϵ, ϵ ∼ N (0, I),

ĝ = Dec(z, fobj). (1)

In our work, we simply concatenate additional vectors to
incorporate more conditions.
Objectives. The CVAE training is supervised by the standard
reconstruction loss LR = ∥g − ĝ∥22 and the KL divergence
loss LKL = DKL

(
N (µ, σ2)

∥∥∥N (0, I)
)

. To enforce geometric
constraints, we introduce an SDF-based loss. Different from
the optimization stage, building a BVH structure for each
object at each iteration during training is time-consuming.
We therefore use a sampled point cloud to represent the
object geometry while still using spheres to represent the hand
geometry. The SDF loss is then given by:

LSDF =
∑
c∈C

max
(
0, rc −min

p∈P
∥c− p∥2

)2

,

where C is the set of spheres representing the hand geometry
and rc is the radius of sphere c. This loss is not only straight-
forward to implement in PyTorch, but we also empirically
find that training with the point-sphere SDF loss is more
stable compared to the mesh-sphere SDF loss used in the
optimization stage. With this SDF loss term, our proposed
DexSimple outperforms SOTA methods by a large margin (see
Sec.V).



The overall loss for the base model is defined as:

L = λRLR + λKLLKL + λSDFLSDF,

where λR, λKL, and λSDF are weights that balance different
loss terms.
Conditions for Data Generation. As mentioned in Sec. III,
each hand pose is associated with a single object 3D point
p by finding the closest point along its heading direction v.
To achieve this, we condition the CVAE on the corresponding
local object feature vector fp.

V. EXPERIMENTS

We firstly evaluate the effectiveness of the proposed gen-
erative model, DexSimple, for grasp synthesis on the Dex-
GraspNet [47] benchmark. Then, we provide details on the
synthesized Dex1B demonstration dataset and compare it with
human-annotated demonstration datasets on both lifting and
articulation tasks. Additionally, we downscale Dex1B and
evalute the performance of methods trained on it. Finally,
ablation studies are conducted to validate our design choices.

A. Grasping Synthesis Evaluation

Grasping is essential in most manipulation tasks, we firstly
evalute the proposed method’s effectiveness in grasp synthesis
using the DexGraspNet [47] benchmark. We train DexSimple
solely with the benchmark’s provided training data, reducing
the output to a single frame and omitting conditioning during
training. The validation is conducted in the Isaac Gym simu-
lator [32] using ShadowHand [13]. We adhere to the metrics
established in the benchmark to ensure fair comparisons with
baseline methods, which are divided into two categories:
quality (Success Rate, Q1-score, Penetration) and diversity (H
mean and H std). We follow the implementations 1 in [47, 27].
We compare with DDG [23], GraspTTA [21], the generation
module in UniDexGrasp [51] (abbreviated as UDG), and
UGG [27].

We present quantitative results in Table II. Many grasp
generation methods, such as UGG [27], commonly employ
post-optimization to enhance performance. To ensure a fair
comparison, we indicate the use of post-optimization (abbrevi-
ated as “Opt”) in the table. The results show that the proposed
generative model, DexSimple, outperforms all baseline meth-
ods by a large margin. In terms of quality, DexSimple (with
post-optimization) achieves the highest success rate (86.0%),
the highest Q1 score (0.125), and the lowest penetration (0.13).
For diversity, DexSimple outperforms baseline with a higher
entropy mean of 8.56.

UGG [27] proposes a learning-based discriminator to filter
grasping, which can be applied to our method. With this
filtering, the success rate increases to 92.6%. It is worth noting
the success rate of DexSimple without post-optimization and
filtering is slightly lower than that of DDG [23]; this is
expected as our method is a generative model while DDG [23]
is a regression model, and our method achieves much higher
diversity (8.53 vs. 5.68).

1Please refer to supp. material for details.

Setting Quality Diversity

Method Opt Filter SR ↑ Q1 ↑ Pen ↓ H mean ↑ H std ↓

DDG [23] 67.5 0.058 0.17 5.68 1.99
UGG [27] 43.6 0.026 0.43 8.33 0.30
DexSimple 63.7 0.075 0.29 8.53 0.25

UDG [51] ✓ 23.3 0.056 0.15 6.89 0.08
GraspTTA [21] ✓ 24.5 0.027 0.68 6.11 0.56
UGG [27] ✓ 64.1 0.036 0.17 8.31 0.28
DexSimple ✓ 86.0 0.125 0.13 8.56 0.15

UGG [27] ✓ ✓ 72.7 0.063 0.14 7.17 0.07
DexSimple ✓ ✓ 92.6 0.132 0.12 8.56 0.16

TABLE II: Grasping synthesis results on the DexGrasp-
Net [47] benchmark. The proposed generative model, DexSim-
ple, significantly outperforms all baseline methods. Some
evaluation results are taken from UGG [27]. Opt, SR, and
Pen are short for Optimization, Success Rate, and Penetration,
respectively.

B. Dataset Analysis

Tasks Definition. While the proposed iterative data generation
pipeline can be applied to multiple hands, we take Shad-
owHand as an example to detail our data curation process.
Beyond the grasping synthesis task in Sec. V-A, we focus
on two tasks: Grasping and Articulation. The goal of the
grasping task is to reach an object placed on a table, grasp
it, and lift it to a specified height (0.4 m) while maintaining
contact between the hand and the object. We show example
trajectories from Dex1B for the grasping task in Fig. 5. The
articulation task requires reaching an articulated structure (e.g.,
a laptop, box, or faucet) and opening it to increase its joint
angle by 0.5 while maintaining contact between the hand and
the object.

For the grasping task, we utilize all 5751 object assets
collected by DexGraspNet [47] and exclude all objects that
cannot stand stably on the table. Note that the settings between
DexGraspNet and our dataset are different. Our focus is
on table-top tasks, while DexGraspNet focuses on grasping
objects in free space. Approximately 90% of grasping demon-
stration in DexGraspNet would collide with the table. For the
articulation task, we utilize 650+ articulation assets collected
by DexArt [2] and ManiSkill [44]. We adopt the official
training/testing splits provided by previous works [47, 16, 2].
Dataset Curation. Our dataset curation starts by optimiz-
ing a seed dataset with 5 million demonstrations. We first
train DexSimple on this seed dataset to create a 50 million
proposal dataset. After optimization refinement, we use the
ManiSkill [44]/SAPIEN [50] simulation to filter out unsuc-
cessful trajectories and rebalance the data as described in
Sec. III. We then retrain DexSimple on the 50 million dataset
to produce a 500 million proposal dataset, and repeat this
process. Finally, we collect a dataset with 950 million (around
1 billion) successful trajectories.
Implementation Details. Compared to DexGraspNet [47], our
implementation of pure optimization-based grasp generation is
30 times faster, requiring only 2 minutes to generate 2000
grasps for 6000 steps on a single RTX-3090, while also



Fig. 4: Diverse demonstrations for objects from train/test splits. We show only the contact frame for clarity.

Fig. 5: Lifting trajectory from Dex1B dataset.

Fig. 6: Probability distribution of joint values from Dex1B
and DexYCB/ARCTIC. The distribution of Dex1B is more
evenly spread, centering around the mean joint values.

achieving a higher success rate (27% vs. 20% for Shadow-
Hand). When initialized with the network, our method is even
700 times faster, including CVAE sampling and 100 post-
optimization steps. All CUDA and geometry-related operations
are implemented using warp-lang [31].

In the proposed DexSimple, we adopt PointNet [37] as the
visual encoder, extracting object features in a dimension of
256. For the CVAE, both the input and output dimensions are
Nframe ×NDOF, and the latent vector dimension is set to 256.
Dataset Comparison. We demonstrate the quality of
Dex1B by comparing it to two large-scale, human-annotated,
trajectory-level datasets: DexYCB [7] and ARCTIC [16].
DexYCB includes 20 objects, with approximately 500 trajec-
tories for each hand. ARCTIC includes 10 articualtion objects
with a total of 301 trajectories. We follow [53, 10] to gen-
erate robot demonstrations from the DexYCB and ARCTIC
dataset, including retargeting human demonstrations to robot
trajectories and adding noise to generate a larger number
of physically plausible demonstrations. We collected 62%
and 64% of all trajectories from the DexYCB and ARCTIC
datasets, respectively, that successfully achieve task goals.

We highlight the diversity of Dex1B. Using the proposed

Eval on DexYCB Eval on Dex1B

Method Training Data Train set Test set Train set Test set

BC w. PointNet DexYCB [7] 34.72 3.03 1.02 2.56
DexSimple DexYCB [7] 43.49 21.21 23.68 22.80

BC w. PointNet Dex1B (ours) 33.02 31.82 31.40 28.54
DexSimple Dex1B (ours) 47.17 53.02 49.58 45.40

(a) Lifting task comparison on DexYCB [7] and Dex1B.
Eval on ARCTIC Eval on Dex1B

Method Training Data Train set Test set Train set Test set

BC w. PointNet ARCTIC [16] 41.03 25.62 37.65 30.16
DexSimple ARCTIC [16] 48.75 23.08 49.16 51.57

BC w. PointNet Dex1B (ours) 57.50 63.67 64.74 56.88
DexSimple Dex1B (ours) 72.00 73.49 77.05 64.79

(b) Articulation task comparison on ARCTIC [16] and Dex1B.

TABLE III: Benchmarks on (a) lifting tasks with DexYCB [7]
and our datasets, and (b) articulation tasks with ARC-
TIC [16] and our datasets. Models trained on Dex1B consis-
tently outperform those trained on DexYCB/ARCTIC across
various tasks, baselines, and splits.

debiasing approach in Sec.III, the diversity across object cate-
gories, joint values, and wrist poses in our dataset can be easily
enhanced by generating additional samples for underrepre-
sented data. Besides, we discretize the range of joint angles
into bins and estimate a probability distribution over them.
Fig. 6 shows the distribution of two joints. Unlike DexYCB
and ARCTIC, which often have joint values concetrate at
the limits, the distribution of Dex1B is more evenly spread,
centering around the mean joint values. This is achieved by
debiasing approach and including a regularization term that
discourages the hand from getting too close to the joint limits
during optimization. Qualitative results are presented in Fig. 4.
Benchmarks. We benchmark two methods for grasping and
articuation tasks on our datasets, and compare them with the
same methods trained on DexYCB [7] and ARCTIC [16]. In
addition to the proposed DexSimple, we implement a vanilla
behavioral cloning with PointNet [37] (referred to as BC w.
PointNet). This model takes the object point cloud, current
hand joint values, and poses as input to predict chunked actions
for the next n = 50 frames. The predicted actions are then



Fig. 7: Qualitative results for both grasping and articulation tasks. We show only the contact frame for clarity.

Fig. 8: Scaling the number of demonstrations used for
training. For both tasks, our model consistently improves with
more training data.

merged using a temporal weighting technique form ACT [55].
The results are reported in Tab. III. When comparing models

trained on Dex1B to those trained on DexYCB/ARCTIC, we
consistently find that the former outperforms the latter across
tasks, baselines and splits. This suggests that supervised learn-
ing methods perform better when trained on our larger and
more diverse Dex1B dataset. Tab. III also demonstrates that
the proposed generative method, DexSimple, achieves better
performance than the regression-based BC baselines on both
the relatively small DexYCB/ARCTIC dataset and the larger-
scale Dex1B. For lifting task, it also can be clearly observed
that models trained on DexYCB struggle to generalize to
unseen objects. Qualitative results are shown in Fig. 7.

C. Scaling the Dataset

To investigate the effect of training data size on perfor-
mance, we reduce the amount of training data and analyze its
impact on the success rates of both the lifting and articulation
tasks. As shown in Fig. 8, the performance degradation ratio
increases as data is reduced, illustrating that the success
rates of the proposed DexSimple consistently improve with
more training data. Notably, we observe that performance
degradation is more pronounced for the lifting task than for
the articulation task as training data decreases. We hypothesize
this is because lifting relies heavily on stable object grasping,
requiring a precise geometric understanding of individual
objects, which becomes more challenging with reduced data.
In contrast, the articulation task, which emphasizes trajectory
execution, shows greater resilience to data reduction as it can
adapt to unseen objects through a more generalized approach
to motion. This suggests that while both tasks benefit from
larger datasets, lifting requires a more extensive dataset to
achieve stable performance, whereas articulation maintains

Quality Diversity

Method Success Rate ↑ Q1 ↑ Penetration ↓ H mean ↑ H std ↓

w/o. Lsdf 0.7 0.001 0.92 8.58 0.16
w/o. LD 42.0 0.044 0.23 8.65 0.16
Full Model 63.7 0.075 0.29 8.53 0.25

TABLE IV: Ablation Study of the geometric loss terms
in grasp synthesis. Both Lsdf and LD are crucial for the
grasping quality.

reasonable performance even with less data.

D. Ablation Study

In this section, we ablate the geometric loss terms of
the DexSimple generative model using the DexGraspNet
benchmark, with results detailed in Tab. IV. The sphere-
representation SDF loss, denoted as Lsdf, is designed to
provide fine-grained geometric guidance, which plays a crucial
role in preventing the model from penetrating the object during
grasp synthesis. This loss term is essential for grasping quality,
as removing Lsdf causes a drastic drop in success rate from
63.7 to 0.7. Without Lsdf, the model lacks precise spatial
awareness, leading to significant failures in grasp execution.
On the other hand, the distance loss LD is responsible for
encouraging the hand to make stable contact with the object
surface, which enhances the grasp’s stability. This loss has a
notable impact on both the success rate and the Q1 quality
metric. Although LD slightly increases the penetration value,
it significantly contributes to an improved success rate and
Q1 score, highlighting its importance in achieving reliable
grasps. The diversity metrics, represented by H mean and H
std, are only minimally impacted by both loss terms, indicating
that these geometric losses focus more on grasp quality than
diversity. In summary, both Lsdf and LD are indispensable
for high-quality grasp synthesis, as they address different
aspects of the grasping process—object penetration prevention
and stable contact establishment, respectively.

VI. REAL-WORLD EXPERIMENTS

We demonstrate the effectiveness of the proposed method
in the real world through direct sim-to-real deployment. We
explore two platforms: xArm with an Ability Hand and H1
with an Inspire Hand. We mount a camera in a third-person
view for xArm and an egocentric view for H1. The camera
pose is calibrated using hand-eye calibration. We then take the
partial point cloud observation from the camera as input to the
model. Additionally, we sample 128 poses and select a valid
inverse kinematics (IK) solution. Finally, we apply motion



Fig. 9: We directly deploy the predicted pose to demonstrate
the effectiveness of the proposed method in the real world.

Method Obj-1 Obj-2 Obj-3 Obj-4 Obj-5 Obj-6 Obj-7 Obj-8 Obj-9 Obj-10 Mean

DexSampler 2/5 3/5 5/5 3/5 1/5 4/5 2/5 5/5 1/5 3/5 58%
Ours 4/5 5/5 5/5 5/5 5/5 5/5 5/5 5/5 5/5 4/5 96%

planning to this pose. The successful grasping trajectories are
visualized in Fig. 9.

We compare with DexDiffuser [48] on XArm+Ability Hand.
We evaluate 5 trials per object
on 10 unseen objects (shown
in the figure). Both methods
take partial point clouds as in-
put and use motion planning
to execute the grasp poses.
As DexDiffuser is originally
trained for the Allegro Hand,
we retrain its model using our
dataset and platform. We only
retrained the DexSampler mod-
ule and omitted the DexEval-
uator used in their paper. The results below demonstrate
the better sim-to-real transfer performance of our proposed
method.

VII. CONCLUSION AND LIMITATIONS

In this paper, we present Dex1B, a synthetic dataset for dex-
terous hand manipulation, containing 1 billion demonstrations.
We introduce an iterative data generation pipeline that inte-
grates optimization techniques with learning-based approaches
to efficiently generate manipulation demonstrations. It begins
by creating the see dataset using pure optimization methods,
which is then used to train our generative model, DexSimple.
The model accelerates the data generation loop by producing
a proposal dataset that is further refined through optimization.
The refined datasets are subsequently verified and debiased
for quality assurance. In our experiments, we demonstrate
that DexSimple, enhanced with geometric loss, achieves a 22-
point improvement over previous state-of-the-art methods on
the DexGraspNet benchmark. Additionally, benchmarks for
lifting and articulation tasks highlight the effectiveness of both
Dex1Band DexSimple, showcasing their utility in advancing
dexterous hand manipulation research.

Limitations. We state several key limitations of our method
here: i) Since our method focuses on key-frame action gen-
eration, it operates in an open-loop manner when deployed
in the real world, making it prone to the sim-to-real gap and
control/observation errors. ii) Although the generative model is
significantly more efficient than optimization, our method still
relies on simulation to filter successful data. The simulation
itself remains time-consuming, and reducing its runtime during
data generation is a potential direction for future work. iii)
Our method mainly considers single-object scene settings. For
multi-object scenarios, a stronger vision backbone may be
necessary.

VIII. ACKNOWLEDGMENT

This work was supported, in part, by NSF CAREER Award
IIS-2240014, Qualcomm Innovation Fellowship, and gifts
from Meta.

REFERENCES

[1] OpenAI: Marcin Andrychowicz, Bowen Baker, Maciek
Chociej, Rafal Jozefowicz, Bob McGrew, Jakub Pa-
chocki, Arthur Petron, Matthias Plappert, Glenn Powell,
Alex Ray, et al. Learning dexterous in-hand manipula-
tion. IJRR, 2020.

[2] Chen Bao, Helin Xu, Yuzhe Qin, and Xiaolong Wang.
Dexart: Benchmarking generalizable dexterous manipu-
lation with articulated objects. In CVPR, 2023.

[3] Kevin Black, Noah Brown, Danny Driess, Adnan Es-
mail, Michael Equi, Chelsea Finn, Niccolo Fusai, Lachy
Groom, Karol Hausman, Brian Ichter, et al. π0: A vision-
language-action flow model for general robot control.
arXiv, 2024.

[4] Samarth Brahmbhatt, Cusuh Ham, Charles C Kemp, and
James Hays. Contactdb: Analyzing and predicting grasp
contact via thermal imaging. In CVPR, 2019.

[5] Samarth Brahmbhatt, Ankur Handa, James Hays, and
Dieter Fox. Contactgrasp: Functional multi-finger grasp
synthesis from contact. In IROS, 2019.

[6] Samarth Brahmbhatt, Chengcheng Tang, Christopher D
Twigg, Charles C Kemp, and James Hays. Contactpose:
A dataset of grasps with object contact and hand pose.
In ECCV, 2020.

[7] Yu-Wei Chao, Wei Yang, Yu Xiang, Pavlo Molchanov,
Ankur Handa, Jonathan Tremblay, Yashraj S Narang,
Karl Van Wyk, Umar Iqbal, Stan Birchfield, et al.
Dexycb: A benchmark for capturing hand grasping of
objects. In CVPR, 2021.

[8] Jiayi Chen, Yuxing Chen, Jialiang Zhang, and He Wang.
Task-oriented dexterous grasp synthesis via differentiable
grasp wrench boundary estimator. IROS, 2024.

[9] Yuanpei Chen, Chen Wang, Yaodong Yang, and Karen
Liu. Object-centric dexterous manipulation from human
motion data. In CoRL, 2024.

[10] Zoey Qiuyu Chen, Karl Van Wyk, Yu-Wei Chao, Wei
Yang, Arsalan Mousavian, Abhishek Gupta, and Dieter
Fox. Dextransfer: Real world multi-fingered dexterous



grasping with minimal human demonstrations. RSS IL
workshop, 2022.

[11] Cheng Chi, Zhenjia Xu, Chuer Pan, Eric Cousineau,
Benjamin Burchfiel, Siyuan Feng, Russ Tedrake, and
Shuran Song. Universal manipulation interface: In-the-
wild robot teaching without in-the-wild robots. In RSS,
2024.

[12] Sammy Christen, Lan Feng, Wei Yang, Yu-Wei Chao, Ot-
mar Hilliges, and Jie Song. Synh2r: Synthesizing hand-
object motions for learning human-to-robot handovers.
In ICRA, 2024.

[13] Shadow Robot Company. Shadow hand, 2005. URL
https://www.shadowrobot.com/dexterous-hand-series/.

[14] Enric Corona, Albert Pumarola, Guillem Alenya,
Francesc Moreno-Noguer, and Grégory Rogez. Gan-
hand: Predicting human grasp affordances in multi-object
scenes. In CVPR, 2020.

[15] Hongkai Dai, Anirudha Majumdar, and Russ Tedrake.
Synthesis and optimization of force closure grasps via
sequential semidefinite programming. ISRR, 2018.

[16] Zicong Fan, Omid Taheri, Dimitrios Tzionas,
Muhammed Kocabas, Manuel Kaufmann, Michael J.
Black, and Otmar Hilliges. ARCTIC: A dataset for
dexterous bimanual hand-object manipulation. In CVPR,
2023.

[17] Carlo Ferrari, John F Canny, et al. Planning optimal
grasps. In ICRA, 1992.

[18] Zipeng Fu, Tony Z. Zhao, and Chelsea Finn. Mobile
aloha: Learning bimanual mobile manipulation with low-
cost whole-body teleoperation. In CoRL, 2024.

[19] Shreyas Hampali, Mahdi Rad, Markus Oberweger, and
Vincent Lepetit. Honnotate: A method for 3d annotation
of hand and object poses. In CVPR, 2020.

[20] Yana Hasson, Gul Varol, Dimitrios Tzionas, Igor Kale-
vatykh, Michael J Black, Ivan Laptev, and Cordelia
Schmid. Learning joint reconstruction of hands and
manipulated objects. In CVPR, 2019.

[21] Hanwen Jiang, Shaowei Liu, Jiashun Wang, and Xiao-
long Wang. Hand-object contact consistency reasoning
for human grasps generation. In ICCV, 2021.

[22] Hanwen Jiang, Shaowei Liu, Jiashun Wang, and Xiao-
long Wang. Hand-object contact consistency reasoning
for human grasps generation. In ICCV, 2021.

[23] Min Liu, Zherong Pan, Kai Xu, Kanishka Ganguly, and
Dinesh Manocha. Deep differentiable grasp planner for
high-dof grippers. In RSS, 2020.

[24] Shaowei Liu, Yang Zhou, Jimei Yang, Saurabh Gupta,
and Shenlong Wang. Contactgen: Generative contact
modeling for grasp generation. In ICCV, 2023.

[25] Tengyu Liu, Zeyu Liu, Ziyuan Jiao, Yixin Zhu, and Song-
Chun Zhu. Synthesizing diverse and physically stable
grasps with arbitrary hand structures using differentiable
force closure estimator. RA-L, 2021.

[26] Yumeng Liu, Yaxun Yang, Youzhuo Wang, Xiaofei Wu,
Jiamin Wang, Yichen Yao, Sören Schwertfeger, Sibei
Yang, Wenping Wang, Jingyi Yu, Xuming He, and

Yuexin Ma. Realdex: Towards human-like grasping for
robotic dexterous hand. In IJCAI, 2024.

[27] Jiaxin Lu, Hao Kang, Haoxiang Li, Bo Liu, Yiding Yang,
Qixing Huang, and Gang Hua. Ugg: Unified generative
grasping. In ECCV, 2024.

[28] Qingkai Lu, Mark Van der Merwe, and Tucker Hermans.
Multi-fingered active grasp learning. In IROS, 2020.

[29] Tyler Ga Wei Lum, Martin Matak, Viktor Makoviy-
chuk, Ankur Handa, Arthur Allshire, Tucker Hermans,
Nathan D. Ratliff, and Karl Van Wyk. Dextrah-g: Pixels-
to-action dexterous arm-hand grasping with geometric
fabrics. In CoRL, 2024.

[30] Jens Lundell, Francesco Verdoja, and Ville Kyrki. Ddgc:
Generative deep dexterous grasping in clutter. RA-L,
2021.

[31] Miles Macklin. Warp: A high-performance python frame-
work for gpu simulation and graphics. https://github.com/
nvidia/warp, March 2022.

[32] Viktor Makoviychuk, Lukasz Wawrzyniak, Yunrong
Guo, Michelle Lu, Kier Storey, Miles Macklin, David
Hoeller, Nikita Rudin, Arthur Allshire, Ankur Handa,
et al. Isaac gym: High performance gpu-based physics
simulation for robot learning. In NeurIPS Datasets and
Benchmarks, 2021.

[33] Anusha Nagabandi, Kurt Konolige, Sergey Levine, and
Vikash Kumar. Deep dynamics models for learning
dexterous manipulation. In CoRL, 2020.

[34] Jean Ponce, Steve Sullivan, J-D Boissonnat, and J-P
Merlet. On characterizing and computing three-and four-
finger force-closure grasps of polyhedral objects. In
ICRA, 1993.

[35] Jean Ponce, Steve Sullivan, Attawith Sudsang, Jean-
Daniel Boissonnat, and Jean-Pierre Merlet. On comput-
ing four-finger equilibrium and force-closure grasps of
polyhedral objects. IJRR, 1997.

[36] Domenico Prattichizzo, Monica Malvezzi, Marco Gabic-
cini, and Antonio Bicchi. On the manipulability ellip-
soids of underactuated robotic hands with compliance.
RAS, 2012.

[37] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J
Guibas. Pointnet: Deep learning on point sets for 3d
classification and segmentation. In CVPR, 2017.

[38] Yuzhe Qin, Yueh-Hua Wu, Shaowei Liu, Hanwen Jiang,
Ruihan Yang, Yang Fu, and Xiaolong Wang. Dexmv: Im-
itation learning for dexterous manipulation from human
videos. In ECCV, 2022.

[39] Alberto Rodriguez, Matthew T Mason, and Steve Ferry.
From caging to grasping. IJRR, 2012.

[40] Carlos Rosales, Raúl Suárez, Marco Gabiccini, and An-
tonio Bicchi. On the synthesis of feasible and prehensile
robotic grasps. In ICRA, 2012.

[41] Lin Shao, Fabio Ferreira, Mikael Jorda, Varun Nambiar,
Jianlan Luo, Eugen Solowjow, Juan Aparicio Ojea, Ous-
sama Khatib, and Jeannette Bohg. Unigrasp: Learning a
unified model to grasp with multifingered robotic hands.
RA-L, 2020.

https://www.shadowrobot.com/dexterous-hand-series/
https://github.com/nvidia/warp
https://github.com/nvidia/warp


[42] Ritvik Singh, Arthur Allshire, Ankur Handa, Nathan
Ratliff, and Karl Van Wyk. Dextrah-rgb: Visuomotor
policies to grasp anything with dexterous hands. arXiv
preprint arXiv:2412.01791, 2024.

[43] Balakumar Sundaralingam, Siva Kumar Sastry Hari,
Adam Fishman, Caelan Garrett, Karl Van Wyk, Valts
Blukis, Alexander Millane, Helen Oleynikova, Ankur
Handa, Fabio Ramos, et al. Curobo: Parallelized
collision-free robot motion generation. In ICRA, 2023.

[44] Stone Tao, Fanbo Xiang, Arth Shukla, Yuzhe Qin,
Xander Hinrichsen, Xiaodi Yuan, Chen Bao, Xinsong
Lin, Yulin Liu, Tse kai Chan, Yuan Gao, Xuanlin Li,
Tongzhou Mu, Nan Xiao, Arnav Gurha, Zhiao Huang,
Roberto Calandra, Rui Chen, Shan Luo, and Hao Su.
Maniskill3: Gpu parallelized robotics simulation and
rendering for generalizable embodied ai. arXiv, 2024.

[45] Dylan Turpin, Liquan Wang, Eric Heiden, Yun-Chun
Chen, Miles Macklin, Stavros Tsogkas, Sven Dickinson,
and Animesh Garg. Grasp’d: Differentiable contact-rich
grasp synthesis for multi-fingered hands. In ECCV, 2022.

[46] Dylan Turpin, Tao Zhong, Shutong Zhang, Guanglei
Zhu, Eric Heiden, Miles Macklin, Stavros Tsogkas, Sven
Dickinson, and Animesh Garg. Fast-grasp’d: Dexterous
multi-finger grasp generation through differentiable sim-
ulation. In ICRA, 2023.

[47] Ruicheng Wang, Jialiang Zhang, Jiayi Chen, Yinzhen Xu,
Puhao Li, Tengyu Liu, and He Wang. Dexgraspnet: A
large-scale robotic dexterous grasp dataset for general
objects based on simulation. In ICRA, 2023.

[48] Zehang Weng, Haofei Lu, Danica Kragic, and Jens
Lundell. Dexdiffuser: Generating dexterous grasps with
diffusion models. RA-L, 2024.

[49] Albert Wu, Michelle Guo, and C Karen Liu. Learning
diverse and physically feasible dexterous grasps with
generative model and bilevel optimization. CoRL, 2022.

[50] Fanbo Xiang, Yuzhe Qin, Kaichun Mo, Yikuan Xia, Hao
Zhu, Fangchen Liu, Minghua Liu, Hanxiao Jiang, Yifu
Yuan, He Wang, et al. Sapien: A simulated part-based
interactive environment. In CVPR, 2020.

[51] Yinzhen Xu, Weikang Wan, Jialiang Zhang, Haoran Liu,
Zikang Shan, Hao Shen, Ruicheng Wang, Haoran Geng,
Yijia Weng, Jiayi Chen, et al. Unidexgrasp: Universal
robotic dexterous grasping via learning diverse proposal
generation and goal-conditioned policy. In CVPR, 2023.

[52] Lixin Yang, Xinyu Zhan, Kailin Li, Wenqiang Xu,
Jiefeng Li, and Cewu Lu. Cpf: Learning a contact
potential field to model the hand-object interaction. In
ICCV, 2021.

[53] Jianglong Ye, Jiashun Wang, Binghao Huang, Yuzhe Qin,
and Xiaolong Wang. Learning continuous grasping func-
tion with a dexterous hand from human demonstrations.
RA-L, 2023.

[54] Jialiang Zhang, Haoran Liu, Danshi Li, XinQiang Yu,
Haoran Geng, Yufei Ding, Jiayi Chen, and He Wang.
Dexgraspnet 2.0: Learning generative dexterous grasping
in large-scale synthetic cluttered scenes. In CoRL, 2024.

[55] Tony Z. Zhao, Vikash Kumar, Sergey Levine, and
Chelsea Finn. Learning fine-grained bimanual manipu-
lation with low-cost hardware. In Kostas E. Bekris, Kris
Hauser, Sylvia L. Herbert, and Jingjin Yu, editors, RSS,
2023.

[56] Tony Z Zhao, Jonathan Tompson, Danny Driess, Pete
Florence, Kamyar Ghasemipour, Chelsea Finn, and
Ayzaan Wahid. Aloha unleashed: A simple recipe for
robot dexterity. In CoRL, 2024.

[57] Yi Zhao, Le Chen, Jan Schneider, Quankai Gao, Juho
Kannala, Bernhard Schölkopf, Joni Pajarinen, and Dieter
Büchler. Rp1m: A large-scale motion dataset for piano
playing with bi-manual dexterous robot hands. arXiv
preprint arXiv:2408.11048, 2024.

[58] Yu Zheng and Chee-Meng Chew. Distance between
a point and a convex cone in n-dimensional space:
Computation and applications. T-RO, 2009.



Dex1B: Learning with 1B Demonstrations for Dexterous Manipulation

Appendix

I. GRASPING SYNTHESIS EVALUATION DETAILS

We evaluate the performance of the proposed generative
model, DexSimple, using the DexGraspNet [47] benchmark.
This benchmark includes 5355 objects, with each object as-
sociated with approximately 200 grasps across five scales:
{0.06, 0.08, 0.1, 0.12, 0.15}. We follow the train/test splits
provided by the benchmark, which divide it into 4229 objects
for training and 1126 objects for testing. We train DexSimple
only using the training data provided by the benchmark. The
results of DDG [23], GraspTTA [21], UDG [51] and UGG [27]
are taken from the UGG [27] paper.

In the evaluation, we adhere to the metrics established in
DexGraspNet [47], which are divided into two categories:
Quality (Success Rate, Q1-score, Penetration) and Diversity
(H mean and H std). We detail each metric here.
Quality Metrics. i). Success rate (%): A grasp is considered
successful if it withstands at least one of the six gravity
directions in the Isaac Gym simulator [32] and maintains a
maximal penetration depth of less than 0.5 cm. ii). Q1-score:
Q1 [17] is the radius of the inscribed sphere of the ConvexHull
(∪iwi), indicating the norm of the smallest wrench that can
destabilize the grasp. The contact threshold is set to 1 cm.
iii). Maximal Penetration Depth (cm): This metric measures
the penetration depth from the object point cloud to the hand
meshes.
Diversity Metrics. Diversity in the DexGraspNet benchmark
is evaluated using joint angle entropy. The range of joint
motion is divided into 10000 bins2, and all generated samples
are used to estimate a probability distribution. The entropy is
calculated based on this distribution. The reported values in
main text refer to the mean and standard deviation across all
joints (H mean and H std).

II. BENCHMARK DETAILS

The proposed Dex1B dataset contains 3,491 objects for
training and 933 objects for testing in the lifting task, as well as
43 articulation objects for training and 21 articulation objects
for testing in the articulation task.

The lifitng and articulation tasks are conducted in the
ManiSkill [44]/SAPIEN [50] simulation environments. The
physical parameters are listed in Tab. V.
Lifting Task Definition. The hand begins from a randomly
sampled pose and joint configuration. The goal of the lifting
task is to reach an object placed on a plane (table), grasp it,
and lift it to a height of 0.4 m. Additionally, the task requires
at least two fingers to maintain contact with the object in the
final frame. We show example trajectories from Dex1B for the
lifting task in Fig. 10.

2The value 10000 is taken from the UGG implementation, and the entropy
results obtained using this value are consistent with those reported in [47, 27].
However, the descriptions provided in [47, 27] are inaccurate.

Parameter Value

Object Mass 0.1 kg
Simulation Frequency 100
Control Frequency 25
Contact Offset 0.001
Solver Position Iterations 30

TABLE V: Physical parameters for the simulation.

Fig. 10: Lifting trajectory from Dex1B dataset.

Articulation Task Definition. The hand begins from a ran-
domly sampled pose and joint configuration. The goal of
the articulation task is to reach the interactable link of an
articulated structure (e.g., the top link of a laptop) and open
it to increase its joint angle by 0.5 radians. Additionally, the
task requires at least two fingers to maintain contact with the
object in the final frame. We show example trajectories from
Dex1B for the lifting task in Fig. 11.

Fig. 11: Articualtion trajectory from Dex1B dataset.

III. ITERATIVE DATA ENGINE DETAILS

The Iterative Data Engine begins with a controllable opti-
mization algorithm for hand pose and trajectory optimization.
Both the grasping synthesis and motion planning can be
formulated as optimization problems [25, 47, 43]. We first
describe the pure optimization-based data generation process
for both grasping and motion planning.

A. Grasping Synthesis as Optimizaiton

Differentiable Force Closure. Following [25, 47], we adopt
differentiable force closure estimator as an energy term for
grasping optimization. This term encourages a set of contact
points to form force closure, can be expressed as

Efc = ∥Gc∥2 (2)



where
G =

[
I3 · · · I3

[x1]× · · · [xn]×

]

[xi]× =

 0 −x
(z)
i x

(y)
i

x
(z)
i 0 −x

(x)
i

−x
(y)
i x

(x)
i 0


Here x represents n = 4 contact points, c ∈ Rn×3 represents

the contact normal vectors, which can be computed given
object mesh O and x. As in DexGraspNet, the contact points
are randomly chosen from a predefined set of candidate contact
points at each iteration.
SDF Energy. To prevent penetration, [47, 21] represent
objects as point clouds and compute the penetration distance
between object point clouds and hand link meshes. In contrast,
we represent objects as meshes and hand links as spheres,
calculate the sphere-mesh signed distance function (SDF), and
leverage a BVH structure to accelerate computations.

Esdf = max
(
−min

s
(SDF(scenter) + sradius) , 0

)
(3)

Here, s denotes the sphere, scenter ∈ Rn×3 is the 3D position
of the sphere center, and sradius ∈ R+ is the sphere radius.
SDF(scenter) is the SDF query operation (inside is negative).
We implement this term using warp-lang [31]. The resulting
SDF term is far more accurate and efficient.
Other Energy Terms. We follow DexGraspNet [47] to add
contact distance (ED), self-penetration energy (ES), and joint
limit energy (EJ):

ED =
∑
i

d(xi, O),

ES =
∑

max
p ̸=q

(δ − d(p, q), 0),

EJ =
∑
i

(
max(θi − θmax

i , 0) + max(θmin
i − θi, 0)

) (4)

Here, contact distance (ED) is the distance between prede-
fined contact points xi and object mesh O. Self-penetration
energy (ES) is the threshold δ = 0.02 minus the distance
betwee joints p, q. Joint limit energy (EJ) is the deviation for
joint angles θ from their joint limits.

The complete energy function for grasping synthesis is as
follows:

E = Efc + wsdfEsdf + wDED + wSES + wJEJ, (5)

The weights are set as follows: wsdf = 100.0, wD = 100.0,
wS = 10.0, wJ = 1.0.

B. Motion Planning as Optimizaiton

We formulate motion planning as an optimization prob-
lem incorporating SDF energy (Esdf), self-penetration en-
ergy (ES), joint limit energy (EJ), and smoothness energy
(Esmooth). The first three energy terms are extensions of
single-frame grasping formulations to multi-frame settings.
The last smoothness energy ensures velocity smoothness:

Esmooth =
∑T

t=2 ∥(gt − gt−1)/∆t∥2 (6)

Here, g = (T,R, θ) represents the grasp tuple with T ∈ R3

for global translation, R ∈ SO(3) for global rotation, and
θ ∈ Rd for joint angles.
Continuous Euler Angles Optimization. Free hand is typi-
cally implemented using 6 root joints (3 prismatic joints for
translation, 3 revolute joints for rotation) in the simulation.
The 3 revolute joints are equivalent to intrinsic Euler angles (x-
y-z). However, converting from other rotation representations
(such as 6D rotation) to intrinsic Euler angles is not necessarily
continuous across time steps. To address this, we use an
optimization-based approach for rotation conversion. Specifi-
cally, we use a smoothness energy term (Esmooth) and a rotation
difference term, which indicates the rotation angle difference
between current rotation and target rotation, to optimize the
revolute joint angles over a trajectory.

C. Task-specific Trajectory Optimization

Both the lifting and articulation demonstrations can be
divided into three stages: pre-grasping, grasping, and post-
grasping. The grasping stage involves grasp synthesis, while
the pre-grasping stage focuses on motion planning. In the post-
grasping stage, lifting requires raising the hand’s height (z-
value), whereas articulation requires rotating the hand along
the axis of the articulated structure. For all demonstrations,
we follow this data generation process: i) Grasp synthesis; ii)
Sampling the starting pose and perform motion planning; iii)
Generating the task-specific post-grasping trajectory.

IV. DEXSIMPLE MODEL DETAILS

While generative models [21, 24, 27] have been extensively
studied for dexterous manipulation, we introduce several dif-
ferentiable loss terms inspired by optimization-based methods,
SDF loss, distance loss, and smoothness loss, and demonstrate
that these losses significantly enhance performance. For the
SDF loss, due to the lack of cache support for BVH structures
in warp-lang, we use point-sphere SDF queries instead of
mesh-sphere SDF queries during large-scale training.

The proposed DexSimple is a CVAE architecture with a
PointNet encoder. The architecture details and training hyper-
parameters for DexSimple are provided in Tab. VI.

Parameter Value

Num. Points 1024
PointNet Layer Sizes (3, 64, 128, 1024, 256)
CVAE In/Out Dim. Nframes ×NDOF

CVAE Layer Sizes (256, 512, 256)
Learning rate 1e-5
MSE Loss Weight 1.0
KL Loss Weight 1e-4
SDF Loss Weight 1e-4
Distance Loss Weight 1e-4
Smoothness Loss Weight 1e-5
Optimizer Adam

TABLE VI: Parameters for DexSimple.


	Introduction
	Related Work
	Dex1B Benchmark
	DexSimple Model
	Experiments
	Grasping Synthesis Evaluation
	Dataset Analysis
	Scaling the Dataset
	Ablation Study

	Real-world Experiments

	Conclusion and Limitations 
	Acknowledgment
	Grasping Synthesis Evaluation Details
	Benchmark Details
	Iterative Data Engine Details
	Grasping Synthesis as Optimizaiton
	Motion Planning as Optimizaiton
	Task-specific Trajectory Optimization

	DexSimple Model Details

